grain.experimental.RepeatIterDataset#
- class grain.experimental.RepeatIterDataset(parent, num_epochs=None)#
Repeats the underlying dataset for num_epochs.
If num_epochs is None, repeats indefinitely. Note that unlike RepeatMapDataset, RepeatIterDataset does not support re-seeding for each epoch. Each epoch will be identical.
- Parameters:
parent (IterDataset[T])
num_epochs (int | None)
- __init__(parent, num_epochs=None)#
- Parameters:
parent (IterDataset[T])
num_epochs (int | None)
Methods
__init__(parent[, num_epochs])apply(transformations)Returns a dataset with the given transformation(s) applied.
batch(batch_size, *[, drop_remainder, batch_fn])Returns a dataset of elements batched along a new first dimension.
filter(transform)Returns a dataset containing only the elements that match the filter.
map(transform)Returns a dataset containing the elements transformed by
transform.map_with_index(transform)Returns a dataset of the elements transformed by the
transform.mp_prefetch([options, worker_init_fn, ...])Returns a dataset prefetching elements in multiple processes.
pipe(func, /, *args, **kwargs)Syntactic sugar for applying a callable to this dataset.
prefetch(multiprocessing_options)Deprecated, use
mp_prefetchinstead.random_map(transform, *[, seed])Returns a dataset containing the elements transformed by
transform.seed(seed)Returns a dataset that uses the seed for default seed generation.
Attributes
parents